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A B S T R A C T

Population persistence probability is valuable for characterizing risk to species and informing listing and con-
servation decisions but is challenging to estimate through traditional methods for rare, data-limited species.
Modeling approaches have used citizen science data to mitigate data limitations of focal species and better
estimate parameters such as occupancy and detection, but their use to estimate persistence and inform con-
servation decisions is limited. We developed an approach to estimate persistence using only occurrence records
of the target species and citizen science occurrence data of non-target species to account for search effort and
imperfect detection. We applied the approach to a highly cryptic and data-limited species, the southern hognose
snake (Heterodon simus), as part of its USFWS Species Status Assessment, and estimated current (in 2018) and
future persistence under plausible scenarios of varying levels of urbanization, sea level rise, and management. Of
222 known populations, 133 (60%) are likely extirpated currently (persistence probability < 50%), and 165
(74%) populations are likely to be extirpated by 2080 with no additional management. Future management
scenarios that included strategies to acquire and improve habitat on currently unprotected lands with existing
populations lessened the estimated rate of population declines. These results can directly inform listing decisions
and conservation planning for the southern hognose snake by Federal, State, and other partners. Our approach –
using occurrence records and auxiliary data from non-target species to estimate population persistence – is
applicable across rare and at-risk species for evaluating extinction risk with limited data and prioritizing
management actions.

1. Introduction

The designation of species' conservation statuses has become a
primary tool for international, national, and local organizations to in-
fluence regulatory legislation, inform conservation planning across
species' ranges, and prioritize limited funding for management and
research (Rodrigues et al., 2006; Miller et al., 2007; Rodríguez et al.,
2011; Sutherland and deMaynadier, 2012; Pickens et al., 2017b). Most
processes used to designate species' statuses hinge on evaluation
methods intended to be repeatable and transparent, the best available
scientific information, and standardized criteria that relate status to
extinction risk (Miller et al., 2007; Rodríguez et al., 2011; Smith et al.,
2018). For example, the U.S. Fish and Wildlife Service (USFWS) uses a
standardized approach known as the Species Status Assessment (SSA) to

inform status decisions for each species petitioned for listing under the
U.S. Endangered Species Act (U.S. Fish and Wildlife Service, 2016;
Smith et al., 2018). SSAs – and often other approaches used to designate
species' statuses – require predicting species' risk of extinction under
current conditions and potential future scenarios based on available
scientific information (Larson et al., 2004; McGowan et al., 2017; Smith
et al., 2018). However, data are often limited for many rare or declining
species on which these efforts focus, which makes quantitative esti-
mates of extinction risk difficult or impossible to obtain. These limita-
tions can subsequently lead to assessment methods that lack transpar-
ency or replicability, vague or highly uncertain predictions about
species' statuses, and decisions that are vulnerable to litigation (Regan
et al., 2013; Lowell and Kelly, 2016; Murphy and Weiland, 2016; Smith
et al., 2018).
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Characterizing species' statuses with rigorous estimates of extinction
risk (or its complement, persistence probability) can be hindered by the
quality and quantity of data available. One traditional approach is
population viability analysis (PVA) that estimates metrics of persistence
or abundance over a decision-relevant time frame (Beissinger and
Westphal, 1998; Akçakaya and Sjögren-Gulve, 2000; Morris et al.,
2002; McGowan et al., 2017), but PVA relies on species' demographic
rates (e.g., survival and recruitment) estimated from high quality data
from systematic methods, such as capture-mark-recapture or distance
sampling (Lebreton et al., 1992; Engler et al., 2004; Marshall et al.,
2004). Data sufficient for estimating demographic rates are often un-
available for many species even at local scales. Occupancy modeling is
another approach used to estimate population extinction risk with de-
tection-non-detection data from repeated samples when more intensive
data (e.g., capture-mark-recapture) or demographic estimates are too
challenging or costly to obtain (MacKenzie et al., 2002; Royle and Kéry,
2007; Kéry et al., 2010). However, datasets for many at-risk species are
collected opportunistically (Wolf et al., 2015) and lack the sampling
design required for occupancy modeling. Collecting high quality data to
conduct PVA, occupancy modeling, or additional approaches allows for
estimating persistence while also accounting for imperfect detection
(i.e., separating variation of underlying demographic processes of in-
terest with observation error in the data: MacKenzie et al., 2002; Kery
et al., 2009). Not accounting for imperfect detection can result in biased
or imprecise estimates, especially for secretive, data-poor species
(MacKenzie et al., 2003; Clark and Bjørnstad, 2004; Kery et al., 2009;
Zipkin et al., 2014). An additional challenge for predicting statuses of
species is that data should ideally be collected across broad spatial
extents (i.e., the species' range) and at multiple points in time. It is
inherently difficult and costly to collect demographic data useful for
estimating persistence over large spatial scales. Studies for many at-risk
species commonly collect data from only a small portion of the species'
range, even though demographic rates can vary geographically. This
variation in demographic rates should be accounted for when esti-
mating range-wide persistence (e.g., Tuberville et al., 2009; Bonnot
et al., 2011). Faced with these challenges, Wolf et al. (2015) contended
that estimating persistence was too data-intensive for most at-risk
species using approaches such as PVA. Thus, novel approaches are
needed that use available datasets to better quantify persistence at a
range-wide scale for at-risk species and inform subsequent listing and
conservation decisions.

Citizen science data have been increasingly collected and applied to
ecological and conservation contexts in recent years to mitigate data
gaps and improve estimation of metrics of interest (Dickinson et al.,
2012). One of the most common forms of citizen science data is geor-
eferenced species occurrence records from opportunistic surveys (also
called atlas data), which is collected at large spatial scales, verified by
species experts, and stored on web-based platforms, such as iNaturalist
(www.inaturalist.org), eBird (https://ebird.org), and HerpMapper
(www.herpmapper.org: HerpMapper, 2018). Modeling distributions or
habitat suitability for focal species requires a sufficient number of oc-
currence records distributed across the species' range (Elith and
Leathwick, 2009; Franklin, 2010), so citizen science data can supple-
ment those contained in State-maintained or other databases (e.g.,
natural heritage programs: Groves et al., 1995). Because robust absence
information is often unavailable, several species distribution modeling
studies have begun using citizen science datasets collected for “non-
target” species (i.e., those observed while in search of a focal species) as
“inferred absences” of the focal species, which has improved the ac-
curacy of model estimates of species presence (e.g., Phillips et al., 2009;
Stratmann et al., 2016; Bradter et al., 2018). Occupancy modeling
studies have also incorporated citizen science data from systematic,
repeated surveys to capture search effort, account for imperfect detec-
tion, and improve estimates of population extinction and colonization
(e.g., Kéry et al., 2010; Peach et al., 2017). Integrated population
models can also be used to combine occurrence data from citizen

scientists with mark-recapture and productivity data from formal
sampling efforts to estimate population trends (Robinson et al., 2018;
Zipkin and Saunders, 2018). Still, more opportunities exist for in-
corporating citizen science data into models estimating persistence for
at-risk species in order to overcome common challenges of limited data
and imperfect detection and better assess species' statuses.

This study developed a novel approach to estimate persistence and
characterize the range-wide status of an at-risk species under current
and future conditions using only occurrence records of the target spe-
cies and citizen science data of non-target species. Current conditions
reflect those at the time of the study (in 2018). Specifically, we de-
veloped and applied the approach to a small, highly cryptic, and data-
limited species in the southeastern U.S., the southern hognose snake
(Heterodon simus), as part of its SSA (U.S. Fish and Wildlife Service,
2019). Our objectives were (i) to estimate the probability of persistence
for each of 222 populations under current conditions while accounting
for imperfect detection with citizen science observations of non-target
snake species, and (ii) to project population persistence into the year
2080 under scenarios representing plausible future conditions of ur-
banization, sea level rise, and broad management strategies. This ana-
lysis builds on previous research predicting habitat suitability across
the southern hognose snake's range (Crawford et al., 2020). We used
habitat suitability as a predictor of current population persistence in
2018 and linked changes in habitat suitability from stressors and
management to future persistence. In alignment with the SSA frame-
work (Smith et al., 2018), we employed the conservation biology
principles of resiliency, redundancy, and representation (the “3Rs”)
when designing the analysis and summarizing results. In short, re-
siliency describes the condition of populations and their ability to
persist over time using attributes such as population growth rate; re-
dundancy describes the number and distribution of populations and is
related to the species' ability to withstand large-scale catastrophic
events; and representation describes the breadth of genetic diversity or
ecological settings occupied by the species (Shaffer and Stein, 2000;
Wolf et al., 2015; Smith et al., 2018). We evaluated southern hognose
snake resiliency using population persistence probabilities, redundancy
using the number and spatial distribution of populations predicted to
persist based on a range of probability thresholds, and representation
using the number of populations predicted to persist in each of nine
representative units (unique ecological settings). The results from this
study can directly inform listing decisions and conservation planning
for the southern hognose snake by Federal, State, and other partners.
Our approach – using occurrence records and auxiliary data from non-
target species to estimate population persistence – is applicable across
rare, data-limited species, including many at-risk species in need of
conservation status designations in the U.S. or internationally (e.g., for
the International Union for Conservation of Nature Red List), for eval-
uating extinction risk and prioritizing threats and management actions.

2. Methods

We went through the following steps when conducting this analysis
and describe each step in more detail in the sections below. First, we
gathered a comprehensive dataset of southern hognose snake occur-
rence records and delineated population boundaries and representative
units based on clusters of these records (Section 2.1). We also extracted
spatial metrics of current conditions (e.g., mean habitat suitability) for
each population in this step to use later as predictors of persistence.
Second, we gathered occurrence records for other snake species (non-
target species) commonly observed in southern hognose snake habitats
that were found within population boundaries to represent search effort
(Section 2.2). Third, we constructed a persistence model to estimate
current population persistence that leveraged southern hognose snake
detection histories and search effort histories of non-target species to
account for imperfect detection (Section 2.3). Fourth, we created seven
scenarios of stressors and management representing a range of plausible
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future conditions for the species; we then constructed a projection
model to forecast population persistence through 2080 under each
scenario, given current population persistence and predicted changes in
habitat (Section 2.4). Lastly, we summarized results by representative
unit and range-wide currently (in 2018) and in 2080 to characterize the
species' status using resiliency, redundancy, and representation (see
Section 3. Results). We performed all spatial analyses in ArcGIS version
10.4 (ESRI, Redlands, CA) and statistical analyses in R version 3.5.3 (R
Core Team, 2019).

2.1. Target species, populations, and representative units

The southern hognose snake is a small terrestrial species found in
the Coastal Plain region of the southeastern U.S. in portions of North
Carolina, South Carolina, Georgia, Florida, and west to Alabama and
Mississippi (Fig. 1: Tuberville et al., 2000; U.S. Fish and Wildlife
Service, 2019). In addition to substantial habitat loss, fragmentation,
and degradation caused by infrequent fire of longleaf pine (Pinus pa-
lustris) systems (Outcalt and Sheffield, 1996), threats to the species
include spread of invasive species such as the red imported fire ant
(Solenopsis invicta), road mortality, and other factors (Gibbons et al.,
2000; Tuberville et al., 2000; Beane et al., 2014). The southern hognose
snake is highly cryptic with low rates of detection (Steen et al., 2012),
which has made it challenging to explicitly estimate demographic rates,
population trends, or effects of threats (Beane et al., 2014; Willson
et al., 2018). Only a few, localized studies have been able to estimate

certain demographic rates and population densities for this species
using road surveys and radio-tracking of a few individuals (Enge and
Wood, 2002; Beane et al., 2014; Willson et al., 2018). Tuberville et al.
(2000) conducted a range-wide review of published information and
species occurrence records to identify qualitative trends in distribution
of occupied areas, and evidence suggested population extirpations are
likely to have occurred across a large portion of the species' range while
other populations appeared stable at the time. The USFWS was peti-
tioned to list the southern hognose snake in July 2012 and subsequently
published a 90-day finding indicating that listing may be warranted for
the species (80 FR 37568, July 1, 2015). In 2019, the USFWS conducted
an SSA to formally assess the species' viability using the best available
scientific data despite the limited data available for the species.

We compiled a geospatial database of southern hognose snake oc-
currence records from datasets maintained by natural heritage pro-
grams, USFWS, U.S. Forest Service (USFS), U.S. Department of Defense
(DoD), State agencies, academic researchers, and HerpMapper
(HerpMapper, 2018). We note that all species records submitted to
HerpMapper were validated by professional herpetologists. Records
included opportunistic sightings, as well as observations from sys-
tematic studies from trained researchers (e.g., Enge et al., 2014).

Next, we created population boundaries around occurrence records.
Delineating populations ideally relies on information about genetics,
home ranges, or dispersal distances, but this does not exist for the
southern hognose snake. Therefore, we buffered all records by 5 km,
joined overlapping buffers to represent the same population, and

Fig. 1. Southern hognose snake populations (N = 222) categorized by current persistence probability. Grey shaded backgrounds indicate nine representative units
across the species' range. Boxes indicate the unit name and number of populations in the unit in each of the five persistence categories (from 0–49% [left] to 95–100%
[right]) shown in the legend.
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divided population boundaries by large (6th order or higher) rivers and
major highways that likely represent barriers to southern hognose
snake movement. We based these methods on species expert input and
NatureServe protocols for defining populations for small terrestrial
snakes (NatureServe, 2018). Using population boundaries, we con-
ducted spatial analyses and extracted three population-specific metrics
to use as predictors in the persistence model: (1) mean Habitat Suit-
ability Index (HSI), that was derived from the work of Crawford et al.
(2020), where HSI was positively influenced by the amount of well-
drained soil, compatible land cover, and fire frequency in a focal area,
(2) percentage of area within the population boundary on protected
lands, and (3) the number of additional populations within 10 km
(Table 1). We defined all areas as protected if they were found in the
U.S. Geological Survey (USGS) Protected Areas Database (http://www.
protectedlands.net/), as well as State-maintained conservation lands
databases, and these databases included publicly-owned and managed
lands as well as private lands registered in State or Federal programs
where natural resource conservation is one of the management goals.
For further spatial processing details, see U.S. Fish and Wildlife Service
(2019, section 4.1.2, Appendix A).

We delineated nine subdivisions of the range (hereafter, re-
presentative units: Fig. 1) in collaboration with species experts to re-
present variation in ecological roles of the species across its range. Units
were based on EPA IV ecoregions (U.S. Environmental Protection
Agency, 2017) that were grouped by similar ecological characteristics
(e.g., soil, geology) and divided by the Savannah, Chattahoochee, and
Mobile-Tombigbee Rivers.

Lastly, we assigned the appropriate population ID and re-
presentative unit ID for each southern hognose snake record. From
these records, we created detection histories (denoted as yi,t) describing
if at least one individual was observed in a population i in a given year t
(yi,t = 1, 0 otherwise) to model persistence (see Section 2.3).

2.2. Non-target species data collection

Models estimating persistence or other demographic parameters
typically rely on non-detection information – i.e., when searches oc-
curred but the target species was not observed – to account for im-
perfect detection (MacKenzie et al., 2002; Kery et al., 2009; Kery and
Schaub, 2012). However, robust absence or search effort data do not
exist for the southern hognose snake. Therefore, we developed a search
effort index to estimate detection from citizen-collected occurrence
records of southern hognose snakes and other non-target snake species
commonly observed in southern hognose snake habitats obtained from
HerpMapper and other partners (hereafter search effort dataset). We
developed a list of 13 non-target species most commonly observed
while surveying for southern hognose snakes that are active during the
same months of peak activity (May, June, September, and October):
Agkistrodon contortrix subspp., Agkistrodon piscivorus subspp., Cemophora
coccinea subspp., Coluber constrictor subspp., Crotalus adamanteus, Cro-
talus horridus, Lampropeltis getula subspp., Masticophis flagellum subspp.,

Opheodrys aestivus subspp., Pantherophis guttatus, Pantherophis obsoletus
subspp., Pituophis melanoleucus subspp., and Thamnophis sirtalis subspp.
(multiple experts, pers. comm.). We queried HerpMapper and accessed
11,631 records of these snake species within the study extent. These
records included data on observer name and date of observation. We
added 1522 Florida pine snake (Pituophis melanoleucus mugitus) records
collected during a previous study (Crawford et al., 2020) and all
southern hognose snake records, since these also indicated search
events, to the search effort dataset. Snake datasets included records
collected between 1880 and 2018 that we used to create a search effort
index.

We assigned the appropriate population ID to each record in the
search effort dataset and removed any record falling outside of any
population boundary, which left 5473 records. We noticed occasions in
the HerpMapper data where the same observer would submit multiple
records from the same date. In order to better capture the number of
search events and create an index of search effort, we filtered the search
effort dataset to remove duplicate records coming from the same ob-
server on the same date. Thus, the final dataset represented unique
searches by individuals, which we refer to as observer-days, and in-
cluded 3825 observer-days in total. We then followed the same process
used to create detection histories of southern hognose snakes to create
search effort histories for each population. Search effort histories (si,t)
described the number of observer-days for population i in year t. Lastly,
we scaled all search effort values so they were centered on 0 for use in
the persistence model.

Records of non-target snake species that fell within a given popu-
lation boundary indicate that the area was searched by an individual in
a given year and informed the likelihood a population is still persisting.
In using non-target species data, we made the following assumptions:
(i) non-target records indicated an event when an area known to have
southern hognose snakes at some time was searched, (ii) the search was
performed in a way that southern hognose snakes could be observed
(e.g., road surveys), and (iii) when a person submitted non-target re-
cords but not southern hognose snake records to HerpMapper after a
search, this indicated the area was searched but no southern hognose
snake was found (i.e., we assumed southern hognose snakes would be
reported if found).

2.3. Current persistence model

We developed a model (hereafter, persistence model) to estimate
trends in southern hognose snake populations and derive probabilities
that each population in the species' range persists currently in 2018. We
adapted the Cormack-Jolly-Seber model (Lebreton et al., 1992; Brooks
et al., 2000), designed to estimate survival of individual animals based
on mark-recapture data, to analogously estimate persistence (“sur-
vival”) of populations based on their detection histories. We applied a
state-space formulation fitted in a Bayesian framework (Kery and
Schaub, 2012) to estimate the annual population persistence prob-
ability (φi,t) and detection probability (pi,t), given the population was

Table 1
List of predictors used to model southern hognose snake population persistence, the hypothesized relationships to population resilience, and the average and range of
predictors across 204 populations modeled.

Site condition predictor Biological justification Mean (range)

Habitat suitability index (HSI) Higher habitat suitability represents areas of higher quality (well-drained, sandy soils, compatible forest/grassland
landcover, frequent fires) that should increase southern hognose snake survival, recruitment, and persistence. The average
HSI within a population boundary is highly correlated to the amount of suitable habitat. See Crawford et al. (2020).

22% (0–83.2%)

Percentage protected Higher percentages of area within a population's boundary in protected status should increase habitat quality through
regular management practices and may limit direct threats such as road mortality and collection.

21.1% (0–100%)

No. of populations within 10 km Populations close to (within 10 km) other populations may have a higher chance of long-term persistence. Nearby
populations may provide opportunities for “rescue” where recolonization can occur after a catastrophe; alternatively,
nearby populations could provide a signal that there are localized conditions (e.g., geological, climatic) that promote
population persistence that have not been otherwise captured in our analyses.

1.8 (0–7)
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still persisting in year t.
We modeled the persistence state history (zi,t) of a population over

the period from 1950 to 2018. Although 55 southern hognose snake
records (2.5% of total records in dataset) were found between 1880 and
1950, fitting the model to this full time period would have been com-
putationally difficult. We modeled state histories of populations using a
Bernoulli trial with an annual population-specific persistence prob-
ability φi,t, where a population could either persist (zi,t = 1) or become
extirpated (zi,t = 0), given that it persisted the year before (zi,t-1 = 1).
We assigned each population a state of zi,1 = 1 (representing the first
year [1950] in the model time frame) and assumed that any area where
southern hognose snakes have ever been observed had a population
persisting at that location in 1950. We also assumed each population
had persisted each year (zi,t = 1) between 1950 and the year of last
observation and supplied these known states as data in the model. The
model then predicted z states each year after the year of last observa-
tion. The prediction of a z state in any year following a final sighting is a
random outcome of the model (0 or 1) and is a deterministic outcome
(1) for years prior to and including the final year when snakes were
observed. We modeled the observation process of detecting at least one
southern hognose snake in a population in a given year (yi,t = 1, 0
otherwise), conditional on the population still persisting as a Bernoulli
trial with probability pi,t.

This framework required a few key assumptions. Importantly, our
model lacked a recolonization mechanism typical of occupancy models
(MacKenzie et al., 2003; Kéry et al., 2010), as preliminary models that
included a recolonization parameter showed poor convergence and
produced unreliable estimates. Although not including recolonization
could lead to underestimates of persistence, our study focused on a
small, terrestrial snake and defined population boundaries relatively
larger than the small home ranges and movement distances suspected
for the species (SSA experts, pers. comm.; Beane et al., 2014; Willson
et al., 2018). In this context, it is reasonable to assume colonization
rates are negligible. It is also reasonable to assume populations per-
sisted between 1950 and the year of last observation. The species has
relatively low dispersal distances and is very difficult to detect (Beane
et al., 2014; Willson et al., 2018), so it seems more likely that popu-
lations not discovered until after 1950 had simply persisted undetected
in 1950 rather than had colonized the area more recently through im-
migration.

We modeled persistence as a logit-linear function of a population's
representative unit and spatial conditions using the relationship

= + + +φ μ β X β X β Xlogit( ) 1 2 3i t rep HSI i t protect i t near i t, , , , (1)

where estimated parameters were μrep (representative unit-specific in-
tercept), βHSI (fixed effect for mean HSI), βprotect (fixed effect for per-
centage of a population boundary on protected lands), and βnear (fixed
effect for number of nearby populations), and X1-3i,t were spatial
condition data. We note that spatial condition data did not vary by time
in the current persistence model but were allowed to vary annually
when projecting future conditions (see Section 2.4). We assumed that
spatial conditions, which were derived from relatively recent datasets
(see Crawford et al., 2020), are representative of conditions that have
influenced persistence since 1950. We modeled detection as a logit-
linear function of a long-term trend and search effort using the re-
lationship

= + +p μ β t β slogit( )i t mean trend effort i t, , (2)

where estimated parameters were μmean (intercept), βtrend (fixed effect
for a linear temporal trend in detection), and βeffort (fixed effect for
search effort). Predictors were year, t, and search effort history, si,t
(scaled number of observer-days), specific to that population and year.
We included the trend effect to allow mean detection to change over
time, given that the quality of search effort may be higher in recent
years due to more easily accessible information on where and how to

search for snake species.
We used standard practices for fitting Bayesian models following

Kery and Schaub (2012). We fit the persistence model with Markov
chain Monte Carlo (MCMC) methods in Jags called from R via the
R2jags package (Su and Yajima, 2012). We assigned diffuse prior dis-
tributions for all parameters, and we generated three MCMC chains
using 100,000 iterations where we retained every third iteration from
the last 50,000 iterations, yielding a final set of 50,001 samples from
posterior distributions of the parameters. We assessed convergence for
all models by visually inspecting chain mixing in MCMC trace plots,
confirming unimodality in posterior distribution plots, and assessing if
Brooks-Gelman-Rubin statistics < 1.1 for all parameters. We assessed
model fit by conducting posterior predictive checks (Gelman et al.,
2000). For the latter technique, we simulated datasets using parameters
estimated in the model, calculated the mean number of populations
with simulated detections of southern hognose snakes in three time
periods (1970–1974, 2000–2004, and 2014–2018), and compared
mean observations in these periods from the real dataset with values
from simulated datasets. We based parameter inferences on posterior
means and 95% Bayesian credible intervals (BCIs; 2.5th–97.5th per-
centile of the distribution) and interpreted parameters as having eco-
logically important impacts when BCIs did not overlap 0.

We used model outputs to characterize range-wide resiliency, re-
dundancy, and representation for the southern hognose snake. We es-
timated population-specific resiliency as the probability that each po-
pulation persisted in 2018 (t = 69) by calculating the percentage of
model iterations where zi,69 = 1. We interpret this value as the prob-
ability a population has persisted through the entire time period mod-
eled (hereafter, current persistence), and we note that this value differs
from φi, t (annual persistence) estimated in the model that reflects the
probability a population will persist into the next year. We further as-
sessed redundancy and representation by summing the number of po-
pulations predicted to persist in 2018 within each representative unit
and range-wide in each iteration of the model and then used all model
iterations to calculate the mean (the most likely prediction) and 95%
BCIs for the predicted number of persisting populations in 2018.
Because status assessments and conservation planning involve making
value judgments related to risk tolerance, we summarized results using
a range of persistence probability thresholds that may aid users in
evaluating species conditions. We grouped populations based on cur-
rent persistence probabilities into the following five categories: unlikely
to persist or “extirpated” (persistence < 50%), more likely than not on
landscape (50–79%), very likely on landscape (80–89%), highly likely
on landscape (90–95%), and extremely likely on landscape or “extant”
(95–100%). We characterized redundancy using the number of popu-
lations above a certain persistence threshold range-wide. We char-
acterized representation using the number of populations above a cer-
tain persistence threshold in each representative unit, as well as the
spatial distribution of extant populations relative to the historical spe-
cies range. We also note that the laws of probability make it so this
mean number of persisting populations (calculated using all model
iterations) approximately equals the number of populations with a 50%
or greater persistence probability.

2.4. Future projection model

We developed a projection model that used a Markovian process to
predict the probability of persistence for each population through 2080
based on the current probability of persistence and future predicted
changes in habitat suitability and land protection, given conditions
specified in seven plausible scenarios of stressors and management
strategies (Table 2). The first three scenarios projected persistence
under varying levels of future stressors (threats) with current man-
agement conditions continuing; the last four scenarios used the most
likely level of future stressors and varying levels of management effort.

Across scenarios, we considered several processes that may
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influence future habitat suitability and population persistence of the
southern hognose snake and used spatial analyses to capture changes in
land cover and fire frequency rasters (developed in Crawford et al.,
2020). Specifically, we captured the effects of future urbanization and
sea level rise on compatible land cover within population boundaries.
We represented low, medium, and high levels of urbanization using
areas predicted to have a 0.9, 0.5, and 0.1 probability of being devel-
oped by 2080, respectively, in the Slope, Land cover, Exclusion, Ur-
banization, Transportation, and Hillshade (SLEUTH) model (Chaudhuri
and Clarke, 2013; Terando et al., 2014). Thus, the scenario using a low
level of urbanization only considered areas to be urbanized in the future
if the SLEUTH model predicted this with a 90% or greater probability;
the scenario using a high level of urbanization included additional areas
predicted to be developed with a lower (10% or greater) probability.
We represented low, medium, and high levels of sea level rise using
coastal areas in NOAA's spatial datasets (https://coast.noaa.gov/slr/;
accessed 15 Nov 2018) predicted to be lost by 2080 to inundation
heights of 1, 3, and 6 ft. (0.3, 0.9, 1.8 m), respectively. We removed any
areas currently classified as compatible land that overlapped future
areas of urbanization and sea level rise by 2080 and interpolated annual
habitat loss each year between 2018 and then. We also captured the
effects of urbanization on fire frequency. This was done to account for
fire exclusion/suppression that often occurs in habitat adjacent to urban
areas, known as the wildland-urban interface, due to safety and smoke
management restrictions (Theobald and Romme, 2007). Studies have
found evidence of fire exclusion/suppression in habitats within 600 m
to 5 km of urban areas (Theobald and Romme, 2007; Pickens et al.,
2017a). Therefore, we chose a moderate value of 3.2 km (2 mi) to
capture the interaction between urbanization and fire frequency. Using
the areas predicted to be urbanized under low, medium, and high
scenarios, we applied a distance-weighted reduction in fire frequency to
the current fire raster where the value of any cell in a future urban area
was reduced by 100%, the value of any cell between 0 and 3.2 km away
from an urban area was reduced proportionally to its distance, and the
value of any cell further than 3.2 km away from an urban area was
unchanged.

We made additional changes to spatial layers to capture the effects
of the last four scenarios varying in management practices, which range
from lowest to highest relative management effort. In the “Decreased
Management” scenario, we decreased future fire frequency by 20% on
protected lands to simulate the equivalent of applying one less pre-
scribed burn every five years in these areas, representing cost or other
logistical constraints to prescribed burning in the future. In the
“Improved Management” scenario, we increased future fire frequency
by 20% on protected lands to simulate applying one additional fire
every five years in these areas. In the “Protect More Populations”

scenario, we represented conditions where current management efforts,
including State-level parcel acquisition and regional longleaf pine re-
storation facilitated by the Longleaf Alliance (a non-governmental or-
ganization), continue and increase in the future. We selected popula-
tions that are very likely to currently persist (≥80% current persistence
probability) but are not currently protected (< 10% on protected land)
and simulated the following changes: (i) we changed the percentage of
the population on protected land to 90% to simulate protecting the
majority of land within the population boundary, (ii) we increased the
percentage of compatible land cover by 10% to simulate restoring ha-
bitat in the population area, and (iii) we increased future fire frequency
on protected lands to simulate applying one additional fire every five
years in these areas. In the “Protect Even More Populations” scenario
(the most intensive and costly management scenario), we simulated the
same changes as the previous scenario except we selected populations
that are more likely than not to persist (> 50% current persistence
probability) but are not currently protected (< 10% on protected land).
See U.S. Fish and Wildlife Service (2019, Section 5.1.2) for additional
information on future scenarios.

We built a multi-loop stochastic simulation model (following
McGowan et al., 2014) that allowed us to simulate thousands of re-
plicates of each population under different scenarios and examine the
relationship between threats and management with future persistence.
This approach accounted for random year-to-year stochasticity as well
as uncertainty around rates (i.e., annual persistence probability) esti-
mated from the current persistence model. The model looped through
10,000 iterations for each of the seven scenarios. In each iteration, it
simulated persistence states (zi,t) of each southern hognose snake po-
pulation over 62 time steps from the present (2018) to 2080. In each
iteration of the model, future population persistence was predicted
using a series of four steps (Fig. 2). In step 1, we calculated annual
values of land cover, fire frequency, and percentage of protected land
for each population using the spatial layers representing stressors and
management in each scenario. In step 2, we used inputs of future land
cover and fire frequency, along with all other constant predictors used
in the habitat suitability model (e.g., soil drainage, local elevation:
Crawford et al., 2020), to calculate mean habitat suitability for each
population and year using the predict.glm function in R, given condi-
tions of each scenario. In step 3, we randomly selected a single set of
posterior estimates of all parameters (e.g., representative unit intercept,
effect of HSI) generated from one iteration of the current persistence
model to account for parametric uncertainty. In step 4, we used the
posterior estimates and scenario-, population-, and year-specific inputs
to simulate populations persisting or becoming extirpated each year
through 2080 using the current persistence model structure. The
probability of persistence of a population in 2019 was predicted by

Table 2
List of seven scenarios used to project future habitat suitability and population persistence for the southern hognose snake. The last four scenarios are ordered from
lowest to highest relative effort. Note: sea level rise represents inundation levels at 2080.

Scenario name Urbanization Sea level rise Management level

Low stressors Low (90%) Low (1 ft. [0.3 m]) Status quo
Medium stressors Medium (50%) (most

likely)
Medium (3 ft. [0.9 m])
(most likely)

Status quo

High stressors High (10%) High (6 ft. [1.8 m]) Status Quo
Decreased management Medium (50%) (most

likely)
Medium (3 ft) (most
likely)

Decreased management effort on protected lands by decreasing fire frequency by 20%
(one fewer burn every 5 years).

Improved management Medium (50%) (most
likely)

Medium (3 ft) (most
likely)

Increased management effort on protected lands by increasing fire frequency by 20% (one
extra burn every 5 years).

Protect more populations Medium (50%) (most
likely)

Medium (3 ft) (most
likely)

Acquire, protect, and improve additional land within population boundaries for those
populations that are very likely to currently persist (> 80% current persistence
probability) but are not currently protected, and improve mgmt. on all protected lands by
increasing fire frequency by one extra burn every 5 years.

Protect even more populations Medium (50%) (most
likely)

Medium (3 ft) (most
likely)

Acquire, protect, and improve additional land within population boundaries for those
populations that are more likely than not to persist (> 50% current persistence
probability) but are not currently protected, and improve mgmt. on all protected lands by
increasing fire frequency by one extra burn every 5 years.
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multiplying its mean current persistence probability (in 2018) by its
expected annual persistence probability based on scenario inputs in the
current persistence model (φcurrent*φt). The state of the population
(persisting or extirpated) in 2019 was drawn from a Bernoulli trial
using that probability. For years 2020 through 2080, the state of a
population was drawn from a Bernoulli trial using the annual persis-
tence probability estimated from inputs representing future conditions,
given that the population had persisted in the previous year.

We used similar outputs and procedures as in the current persistence
model to characterize future resiliency, redundancy, and representation
from the projection model. We calculated the future persistence prob-
ability for each population as the percentage of model iterations where
the population was persisting (z = 1) in 2080 and grouped populations
into the same five categories of persistence probability. We summed the
number of populations at or above a persistence threshold in 2080 and
used all model iterations to calculate the mean (the most likely pre-
diction) and 95% credible intervals for the number of persisting po-
pulations in each representative unit and range-wide each year through
2080. Lastly, we characterized future representation using the spatial
distribution of populations likely to persist in 2080, relative to current
and historical distributions.

See Supplemental material for our R and JAGS code and associated
datasets for the current and future persistence analysis.

3. Results

3.1. Summary of southern hognose snake records and populations

We obtained 2227 southern hognose snake occurrence records from
years 1880–2018. Many early occurrence records only had spatial
precision to the county level. We delineated 222 southern hognose
snake populations across the range (Fig. 1). The number of populations
per representative unit ranged from 4 (Alabama Central) to 58 (Upper
Coastal Plain [GA/FL]; Fig. 1). Of the total dataset, 31 occurrence re-
cords, grouped into 18 populations, fell outside of the area used in the
habitat suitability analysis (Crawford et al., 2020). Because we did not
have habitat metrics to inform predictions of persistence for these po-
pulations, all 31 records were prior to 1975, and our future scenarios
did not consider reintroductions, we counted all 18 populations as ex-
tirpated currently and in the future for all summaries. We used the
remaining 2196 occurrence records, grouped into 204 populations, to
fit the persistence model and project future persistence. Within the 69-

year time frame of the current persistence model (1950–2018),
southern hognose snakes were found 2.67 (range = 1 to 45) times in a
population, on average. From the search effort dataset, the number of
observer-days per year per population ranged from 0 to 82
(mean = 0.167), and records of non-target species came from 124 of
204 (60.8%) populations analyzed.

3.2. Current persistence and species status

The persistence model showed adequate convergence and fit to the
data. Estimated persistence varied considerably by population but was
positively influenced by mean habitat suitability and number of popu-
lations within 10 km (Table 3). Persistence was also positively influ-
enced by the percentage of protected land, but the effect was not as
strong as the other predictors, with the 95% BCIs slightly overlapping 0
(Table 3). Mean annual persistence rates were similar across

Fig. 2. Conceptual model linking components included in the habitat suitability model (green), current persistence model (blue), and impacts of stressors (orange)
and management (yellow) in the projection model for future persistence of southern hognose snake populations. Numbers correspond to projection model steps 1–4
discussed in Section 2.4. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 3
Parameter estimates (means and 95% Bayesian credible intervals [2.5 to 97.5
percentile of the posterior distribution]) for the persistence model predicting
the probability of persistence and detection between 1950 and 2018 for 204
populations of southern hognose snakes. Posterior parameter estimates that do
not overlap zero are interpreted as ecologically important.

Parameter Mean Lower 95% Upper 95%

Persistence
μrep
Upper Coastal Plain (Carolinas) 0.967 0.944 0.984
Upper Coastal Plain (GA/FL) 0.969 0.952 0.982
Atlantic Coastal Plain (Carolinas) 0.969 0.949 0.985
Atlantic Coastal Plain (GA/FL) 0.933 0.874 0.974
FL Peninsula 0.939 0.896 0.970
FL Ridge 0.928 0.856 0.973
AL/FL Panhandle 0.943 0.904 0.971
West (AL/MS) 0.933 0.864 0.976
βHSI 3.074 1.595 4.682
βprotect 0.748 −0.079 1.643
βnear 3.782 2.208 5.445

Detection
μmean 0.012 0.009 0.014
βtrend 0.043 0.038 0.049
βeffort 0.007 −0.045 0.053

Parameter notations: μrep – representative unit intercepts (presented on prob-
ability scale); β – covariate effects on persistence and detection; and μ – inter-
cept.
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representative units. Current persistence probability was equal to 1 for
populations where southern hognose snakes were observed in 2018 and
generally decreased with years since the last observation (Fig. 3). The
estimated mean detection rate was low (0.01) with a positive effect of a
linear temporal trend and weak evidence of a positive effect of search
effort on detection (Table 3).

Measures of current resiliency, redundancy, and representation
have decreased from historical conditions. Range-wide, a majority (133
[60%]) of 222 total delineated populations had a current persistence
probability< 50%, meaning they were more likely than not to be ex-
tirpated, while only 89 (40%), 68 (31%), 59 (27%), and 49 (22%) had a
current persistence probability> 50%, 80%, 90% and 95%, respec-
tively (Fig. 1). The mean number of persisting populations across model
iterations was 89. Populations with higher (> 50%) current persistence
probabilities were distributed across the species' range but exhibited a
degree of spatial clustering (Fig. 1). The geographic extent occupied by
the species has likely decreased as all populations in the northeast and
western edges of the range are likely extirpated at present, including all
populations in the West (AL/MS) and Alabama Central representative
units. Within each of the other representative units, between 50 and
86% of populations had an estimated current persistence prob-
ability < 50% (Fig. 1). See U.S. Fish and Wildlife Service (2019, sec-
tion 4.2, Appendix B) for additional results for current conditions.

3.3. Future persistence and species status

Future scenarios varied in the degree that urbanization, sea level
rise, and management affected land cover and fire frequency, which
influenced mean changes in predicted HSI across populations (see U.S.
Fish and Wildlife Service, 2019, Table B-7). On average, HSI within
populations decreased between 3.9 and 4.9% for the three stressor
scenarios. For all other scenarios, the mean change in HSI from current
conditions ranged from a decrease of 7.5% (Decreased Management) to
an increase of 4.9% (Protect Even More Populations).

Future resiliency, redundancy, and representation were predicted to
decrease from current conditions in all scenarios to varying degrees. We
present results for the mean number of persisting populations from all
model iterations (Fig. 4) to illustrate predicted trends; the same trends
were predicted using the number of populations above a certain per-
sistence threshold (see U.S. Fish and Wildlife Service, 2019, Section 4.2,

Appendix B). There was substantial overlap in the credible intervals
between scenarios. Currently (in 2018), the mean number of persisting
populations was 89 out of 222 (40%). The mean number of persisting
populations was predicted to decrease to 56 (25%) for all three stressor
scenarios by 2080 (Fig. 4; lines for these scenarios all overlap). Relative
to stressor scenarios, the mean number of persisting populations in
2080 was slightly lower for the Decreased Management scenario (54:
24%), slightly higher for the Improved Management scenario (58:
26%), and higher for the Protect More Populations (64: 29%) and
Protect Even More Populations (66: 30%) scenarios (Fig. 4). Within
each representative unit, the number of populations at or above all
persistence probability thresholds (50, 80, 90, and 95%) decreased
from current conditions in all scenarios. Using the number of popula-
tions with a> 90% future persistence probability, no representative
unit was predicted to have a population meeting this threshold under
the Decreased Management scenario, two units had at least one popu-
lation meeting this threshold under the three stressor scenarios and
Increased Management scenario, and five units had at least one popu-
lation meeting this threshold under the Protect More Populations and
Protect Even More Populations scenarios (Fig. 5). Additionally, one
representative unit (Atlantic Coastal Plain [GA/FL]) had only one po-
pulation with a> 50% future persistence probability in all scenarios
except the Protect Even More Populations scenario (two populations),
indicating a higher risk of unit-wide extirpation and loss of re-
presentation, relative to other units. See U.S. Fish and Wildlife Service
(2019, Section 5.2, Appendix B) for additional results for future con-
ditions.

4. Discussion

Approaches for estimating population persistence (i.e., through
PVA) have long been recommended and used to generate quantitative
information for status assessments, conservation planning, and desig-
nation on national or international threatened species lists (Beissinger
and Westphal, 1998; Akçakaya and Sjögren-Gulve, 2000; Morris et al.,
2002; Rodrigues et al., 2006; McGowan et al., 2017; Smith et al., 2018).
Still, persistence modeling approaches have recently faced criticism for
being too data-intensive to be implementable for many at-risk species
petitioned for listing (Wolf et al., 2015). At the same time, citizen sci-
ence databases of plant, invertebrate, fish, and wildlife species have

Fig. 3. Mean (± 95% credible intervals) probability
of persistence in the current year (2018) for southern
hognose snake populations (N = 204) related to the
last year an individual was observed in a population.
Horizontal red dashed lines indicate persistence
thresholds of 50, 80, 90, and 95%, and n values in-
dicate the number of populations with mean current
persistence probabilities at or above each threshold.
Each point represents a population with the excep-
tion that the point with 100% persistence probability
in 2018 represents 18 populations where snakes
were observed that year. (For interpretation of the
references to colour in this figure legend, the reader
is referred to the web version of this article.)
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Fig. 4. Predicted mean (±95% credible intervals) number of persisting southern hognose snake populations between the present year (2018) and 2080, given seven
scenarios of threats and management actions.

Fig. 5. Redundancy, measured by the number of populations above the 90% persistence probability threshold, within representative units for the southern hognose
snake currently and in the year 2080 under seven future scenarios of stressors and management.
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become increasingly populated and accessible, and studies have begun
developing approaches to use these datasets to better estimate certain
parameters like habitat suitability and occupancy (e.g., Kéry et al.,
2010; Peach et al., 2017; Robinson et al., 2018). Our work contributes
an additional example of using citizen science data of non-target species
as inferred absences when target species data are limited, but it also
demonstrates a method for using these minimal inputs to estimate
persistence to inform status assessments and conservation decisions.
Estimating persistence allowed us to characterize the southern hognose
snake's overall status and revealed several patterns in resiliency, re-
dundancy, and representation: (i) a majority (60%) of all known po-
pulations have likely become extirpated by 2018, (ii) the species has
likely experienced a range contraction as two of nine representative
units are likely extirpated, and at least one additional unit is at risk of
extirpation by 2080, and (iii) although more populations are predicted
to become extirpated in the future under all scenarios tested, manage-
ment strategies to acquire and improve habitat on currently un-
protected lands with existing populations could lessen the rate of po-
pulation declines.

It is important to acknowledge that persistence models and esti-
mates, however rigorous, do not solely determine any listing or con-
servation decision for a species. These decisions involve other elements
such as stakeholders' values and risk tolerance that cannot be addressed
with scientific information. However, using a persistence modeling
approach like ours ensures the methods used to characterize a species'
status are transparent and replicable, the results explicitly capture ex-
tinction risk and uncertainty, and any subsequent policy decisions are
based on the best available scientific information. While persistence
probability for a population offers a straightforward metric to compare
with a decision maker's risk tolerance level, persistence can further
serve as the basis for summarizing other metrics important for char-
acterizing a species' status at broader scales. In our study, we used
multiple persistence probability thresholds (analogous to levels of risk
tolerance) to capture principles of redundancy and representation
across the southern hognose snake's range. We expressed these princi-
ples as the number of populations predicted to persist and the number
and extent of ecological settings predicted to be occupied by popula-
tions, respectively. These results provide evidence regarding the spe-
cies' ability to withstand large-scale catastrophic events and changes in
genetic or ecological breadth of the species under current and future
conditions that is valuable for listing and conservation planning deci-
sions for at-risk species (Shaffer and Stein, 2000; Wolf et al., 2015;
Smith et al., 2018).

The persistence and detection components of our model framework
have limitations that should be considered when interpreting results. As
stated previously, our adaptation of the Cormack-Jolly-Seber model
(Lebreton et al., 1992; Brooks et al., 2000) lacked a recolonization
mechanism typical of occupancy models (MacKenzie et al., 2003; Kéry
et al., 2010). We also assumed persistence probability responded only
to landscape-based site predictors (habitat suitability, proportion of
population area in protected status, number of nearby populations) and
not to internal population attributes commonly used in PVAs (e.g.,
population growth or recruitment rates: McGowan et al., 2017). These
more complex frameworks require basic life history and demographic
information that have not been estimated for southern hognose snakes.
Within the context of our study (focused on a small-bodied species with
low detection and limited dispersal), it is reasonable to assume colo-
nization rates are negligible and population dynamics are more strongly
influenced by annual persistence rates in the model, which account for
internal processes of survival and recruitment. Therefore, it is reason-
able that our model can yield accurate estimates of persistence over a
given time frame that are valuable for assessing risk for species with
similar traits.

Our model hinged on accounting for imperfect detection with ci-
tizen science data of non-target species, which required other as-
sumptions. In addition to the assumptions stated previously (see Section

2.2), we assumed that records of non-target snake species within
southern hognose snake population boundaries indicate that preferred
habitat of the southern hognose snake was searched. Although many
non-target species are also found in more mesic habitats that may occur
in population boundaries but are not used by southern hognose snakes,
the list of 13 non-target species includes those most commonly found
during surveys targeting southern hognose snakes according to expert
judgment and previous work (Enge and Wood, 2002). Applying our
approach for other species will require careful consideration of the set
of non-target species used to most accurately represent cases where
appropriate searches were conducted but the target species was not
detected. We also note that we retained the effect of search effort in the
model even though it had a small (but still positive) effect on detection
probability in order to demonstrate its potential application for other
studies using citizen science data. This estimate may have been reduced
by the inclusion of the temporal trend effect, as the two effects may
have been correlated. The number of non-target records generally in-
creased over the 69-year period modeled due to many social and
technological factors (e.g., emergence of citizen science databases,
improvement of georeferencing software on phones). Although in-
cluding both effects may have slightly influenced the precision of
parameter estimates in this study, other studies focused on shorter
temporal scales (< 10 years) would likely not require a trend effect and
could better estimate the isolated effect of search effort. Additional
work could explore any interactions between search effort and temporal
or spatial trends that could relate to the ability of citizen scientists to
detect target species. Lastly, we caution that although citizen science
data can be effectively integrated in models to estimate population
persistence, improving the quality and quantity of data through sys-
tematic surveys (e.g., detection-non-detection data) and other research
efforts (e.g., telemetry, mark-recapture) will reduce the number of re-
quired model assumptions and greatly improve the accuracy of esti-
mates needed for status assessments and conservation planning for at-
risk species.

The results from the current persistence model offer insights into the
effects of site conditions on risk of extinction for southern hognose
snake populations. Relationships between persistence probability and
site predictors agree with life history studies and expert judgment that
the species uses and survives best in fire-dependent, xeric habitat (e.g.,
longleaf pine sandhills: Tuberville et al., 2000; Beane et al., 2014;
Willson et al., 2018) – attributes that were associated with a higher HSI
(Crawford et al., 2020). Still, a specific site may have additional factors,
such as presence of non-native invasive species or a history of over-
collection (Tuberville et al., 2000), that may influence estimates but
were not able to be captured in this analysis. It is reasonable that po-
pulations on protected lands likely have a reduced risk to direct threats
such as habitat loss, road mortality, and collection, especially if pro-
tected lands have been established and managed for conservation goals
over longer periods, which would cause higher population persistence
probabilities. This relationship supports previous findings of Tuberville
et al. (2000) that many southern hognose snake populations on pro-
tected lands appeared to be stable. The strong relationship between
number of populations within 10 km and persistence could support that
nearby populations may provide opportunities for “rescue” where re-
colonization can occur after a catastrophe or could provide a signal that
there are localized conditions (e.g., geological, climatic, management
practices) that promote long-term population persistence that have not
been otherwise captured in our analyses. However, we caution that this
relationship is somewhat phenomenological without further research
into dispersal capabilities of the species (but see Willson et al., 2018) or
influential spatial attributes at local scales. Lastly, the current persis-
tence model also estimated higher than average persistence prob-
abilities for certain populations that had favorable site-level conditions
(i.e., high habitat suitability, percentage of protected land) but no re-
cord of southern hognose snakes or non-target species (i.e., no search
effort) in many years (Fig. 3). These sites could be prioritized for
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surveying to better estimate their current status.
Summarizing persistence outputs from the estimation and projec-

tion models revealed past, present, and future trends of the southern
hognose snake's range-wide status and provided information useful for
prioritizing threats and management actions. There has been a wide-
spread reduction in redundancy (i.e., the number of populations likely
to persist) within each representative unit, which has led to a reduction
in representation through the loss of all populations on the northeast
and western edges of the range. It is very likely that the species has
become extirpated in two of nine representative units (Alabama Central
and West [AL/MS]), which includes all populations in Alabama and
Mississippi where the species has not been detected since 1981 (U.S.
Fish and Wildlife Service, 2019). However, many populations have a
high persistence probability currently (> 95%), and, in general, these
occur on protected lands with suitable habitat. For all future scenarios,
many of these populations were predicted to have lower persistence
probabilities due to the effects of urbanization and sea level rise. We
note that the future projection model did not allow compatible land
cover in protected lands to be removed by urbanization, but spatial
inputs (and, therefore, habitat suitability and persistence) could still be
influenced for populations on protected lands if (i) sea level rise re-
moved compatible land cover or (ii) urbanization occurred adjacent to
protected land boundaries and restricted fire frequency adjacent to
protected land edges due to the wildland-urban interface (Theobald and
Romme, 2007). Range-wide, we found evidence that resiliency, re-
dundancy, and representation would decrease in the future under all
scenarios evaluated – especially those that did not include additional
management actions. Predicted status metrics were nearly identical
among the three stressor scenarios due to minimal differences between
scenarios in the amount of land cover loss, reduction in fire frequency,
and HSI for populations, on average. Still, it may be initially surprising
that persistence predictions were insensitive to the relatively high
amount of uncertainty around rates of urbanization (Terando et al.,
2014) and sea level rise (IPCC, 2013) in the southeastern U.S. Another
important takeaway from future predictions was that the Improved
Management scenario only slightly increased the number of persisting
populations while the two higher management effort scenarios resulted
in greater increases in the number of persisting populations, relative to
stressor scenarios (Fig. 4). The protection for additional populations in
the two highest effort management scenarios also reduced the risk of
losing redundancy and representation, relative to all other scenarios, by
yielding at least one population with a persistence probability> 90% in
the Atlantic Coastal Plain (Carolinas), Florida Peninsula, and Florida
Ridge representative units (Fig. 5). These results highlight the value of
protecting additional populations, rather than solely managing popu-
lations on currently protected lands, if a management goal is to increase
the number of persisting populations and minimize the loss of re-
dundancy and representation for the southern hognose snake in the
future.

Our work demonstrates an approach for estimating persistence for
species when data are limited but conservation decisions are needed.
We expect many at-risk species currently designated for status reviews
and designations in the U.S. and internationally to have data limitations
similar to the southern hognose snake, but citizen science data is be-
coming more abundant and accessible for scientific studies (Zipkin and
Saunders, 2018). Therefore, our persistence model framework could be
applied to overcome these challenges. As we did in this study, practi-
tioners using this approach for other species could benefit from con-
sulting species experts early in the process to identify appropriate lists
of habitat-based or other factors for estimating persistence and non-
target species for estimating search effort and detection. Future sce-
narios could also be developed using input from species experts and
other stakeholders and tailored to a particular decision context (Martin
et al., 2012; Addison et al., 2013; Reside et al., 2019). For our study, we
developed future scenarios to represent a range of plausible conditions,
but our goal was to compare outcomes among broad strategies rather

than guide management actions at specific sites. We acknowledge the
feasibility of implementing management actions contained in scenarios
is uncertain. For example, the ability to implement prescribed fire may
be constrained in the future due to projected increases in temperature
and decreases in precipitation in the southeastern U.S. (Mitchell et al.,
2014). Our model framework could be used to inform site-specific
management decisions by modifying scenarios to include local factors
that could potentially influence persistence, which could be para-
meterized using published literature or expert judgment (e.g.,
McGowan et al., 2017).
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